flasker module¶
Flask server .. rubric:: Example
$ python flasker.py
-
class
flasker.FluServer¶ Bases:
object-
callLineDetector(image)¶
-
callyolo(image)¶
-
ret_inf_lat()¶ Returns the last TFS(EI) inf time delta.
-
-
flasker.align()¶ API endpoint to Run the entire service and give appropriate response.
Example
Sample Request:
{"UUID":"a43f9681-a7ff-43f8-a1a6-f777e9362654","Quality_parameters":{"brightness":"10"},"RDT_Type":"Flu_Audere","Include_Proof":"False"}
Response codes
0=> No Flu detected
1=> Type A Flu detected
2=> Type B Flu detected
3=> Both type A and B detected
Negative values indicate error conditions
-1=> Invalid(No Control Line detected)
-2=> No RDT found in image
Example
Sample API response:
{"UUID":"a43f9681-a7ff-43f8-a1a6-f777e9362654",rc":0,"msg":"No Flu","Include_Proof":"False"}
-
flasker.angle_with_yaxis(p1, p2, img, centers)¶ Compute angle by which image should be rotated,scale factor and returns a translated image
- Parameters
p1 (numpy.array) – X,Y of top pattern 1
p2 (numpy.array) – X,Y of bottom arrow 2
img (numpy.ndarray) – Image with channels last format
centers (list) – Centers of red and blue line (Used for debugging only)
- Returns
3-element list containing
angle (numpy.float): Angle to rotate Clock wise
image (numpy.ndarray): Translated image
centers (list): List of transformed centers (Used for debugging only)
-
flasker.euclidianDistance(p1, p2)¶ Compute euclidian distance between p1 and p2
- Parameters
p1 (numpy.array) – X,Y of point 1
p2 (numpy.array) – X,Y of point 2
- Returns
Distance between two points
- Return type
numpy.float
-
flasker.generateRDTcrop(boxes, im0, targets)¶ Generate RDT cropped image from object detection output
- Parameters
boxes (numpy.ndarray) – Bounding boxes of objects detected and the confidence score
im0 (numpy.ndarray) – Input image
targets (dict) – Centers of red and blue line (Used for debugging only)
- Returns
Response with RDT crop if found
- Return type
dict
-
flasker.postProcessDetections(labels)¶ PostProcess object detection output
- Parameters
labels (numpy.ndarray) – Bounding boxes of objects detected and the confidence score
- Returns
Post processed detections
- Return type
dict
-
flasker.reduceByConfidence(dictBoxC, dictBoxL)¶ This function handles multple object detection by selecting the one with the highest score.
- Parameters
dictBoxC (dict) – Objects detected and confidence
dictBoxL (dict) – Objects detected and bounding box
- Returns
Filtered list of Objects detected and bounding boxes
- Return type
dict
-
flasker.returnCentre(tlbr)¶ This function returns centre of bounding box.
- Parameters
tlbr (list) – list of values in str [topleft_x,topleft_y,bottomright_x,bottomright_y]
- Returns
Centre cordinates of bounding box
- Return type
list
-
flasker.returnROI(img, centers)¶ Return cropped RDT
- Parameters
img (numpy.ndarray) – Image with channels last format
centers (list) – Centers of red and blue line (Used for debugging only)
- Returns
2-element tuple containing
image (numpy.ndarray): RDT image
centers (list): List of transformed centers (Used for debugging only)
-
flasker.rotate_bound(image, angle, centers)¶ Return cropped RDT
- Parameters
image (numpy.ndarray) – Image with channels last format
angle (numpy.float) – Angle to rotate image clockwise
centers (list) – Centers of red and blue line (Used for debugging only)
- Returns
2-element tuple containing
image (numpy.ndarray): Rotated image
centers (list): List of transformed centers (Used for debugging only)